A work-flow which aims at capturing residents’ abnormal activities through the passenger flow of elevator in multi-storey residence buildings is presented in this paper. Firstly, sensors (hall sensor, photoelectric sensor, gyro, accelerometer, barometer, and thermometer) connected with internet are mounted in elevator to collect image and data. Then computer vision algorithms such as instance segmentation, multi-label recognition, embedding and clustering are applied to generalize passenger flow of elevator, i.e. how many people and what kinds of people get in and out of the elevator on each floor. More specifically so-called GraftNet is proposed for fine-grained multi-label recognition task to recognize human attributes(e.g. gender, age, appearance, and occupation). Thirdly, based on the passenger flow data, anomaly detection of unsupervised learning is hierarchically applied to detect abnormal or even illegal activities of the residents. Meanwhile, based on manual reviewed data, Catboost algorithm is implemented for multi-classification task. Experiment shows the work-flow proposed in this paper can detect the anomaly and classify different categories well.
Authors: Shuai Zhu (Shanghai Elevator Media Information Co., Ltd.), Chunhua Jia (Shanghai Elevator Media Information Co., Ltd.), Wenhai Yi (Shanghai Elevator Media Information Co., Ltd.), Yu Wu (Shanghai Elevator Media Information Co., Ltd), Zhuang Li (Shanghai Elevator Media Information Co., Ltd.), Leilei Wu (Shanghai Elevator Media Information Co., Ltd.),
Hide Authors & Abstract